SRMJEEE 2020 Question Pattern

<table>
<thead>
<tr>
<th>General</th>
<th>The question paper will be in English only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Examination</td>
<td>Computer Based Test (Online)</td>
</tr>
<tr>
<td>Duration of the Examination</td>
<td>2 hours and 30 minutes</td>
</tr>
<tr>
<td>Types of questions</td>
<td>Multiple Choice Questions</td>
</tr>
<tr>
<td>Coverage of Subjects</td>
<td>Physics</td>
</tr>
<tr>
<td>Number of Questions</td>
<td>35</td>
</tr>
<tr>
<td>Scoring Method</td>
<td>Each right answer carries 1 mark; No negative marking for wrong answer</td>
</tr>
<tr>
<td>Total Marks</td>
<td>125</td>
</tr>
</tbody>
</table>

- Candidates who have attempted PCMEA in SRMJEEE (UG) are eligible for all the B.Tech Degree Programs
- Candidates who have attempted PCBEA in SRMJEEE (UG) are eligible for B.Tech. Biotechnology and all its specializations and B.Tech Biomedical Engineering.
PART III: SYLLABUS FOR ENTRANCE EXAMINATION SRMJEEE (UG)

B.TECH

PART 1 – PHYSICS (35 QUESTIONS)

UNIT 1: UNITS AND MEASUREMENT, MECHANICS
Units for measurement, system of units-S.I.,
fundamental and derived units, measurements
- errors in measurement - significant figures,
dimensions - dimensional analysis - applications.

Laws of Motion: Newton’s laws of motion - force and
inertia - impulse and momentum - law of conservation
of linear momentum - applications - projectile motion-
uniform circular motion - friction - laws of friction
- applications - centripetal force.

Work, Energy and Power: Work - energy - potential
energy and kinetic energy – power - collision-elastic
and inelastic collisions.

UNIT 2: GRAVITATION, MECHANICS OF SOLIDS AND
FLUIDS
Gravitation: The universal law of gravitation,
acceleration due to gravity - variation of ‘g’ with
altitude, latitude and depth - gravitation potential
- escape velocity and orbital velocity - geostationary
satellites - Kepler’s laws of planetary motion.

Mechanics of solids and fluids: Solids - elastic behaviour,
stress-strain - Hooke's law - Modulli of elasticity
- relation between them - surface tension capillarity
- applications – viscosity - Poiseuille's formula - Stokes
law applications - streamline and turbulent flow
- Reynolds number - Bernoulli’s theorem - applications.

UNIT 3: ELECTROSTATICS
Electric charge - Conservation laws - Coulomb's
law-principle of superposition - continuous charge
distribution - electric field - electric field lines - electric
dipole -electric field due to a dipole - torque on a dipole
in uniform electromagnetic field - Electric flux - Gauss's theorem
field due to infinitely long straight wire - uniformly
charged infinite plane sheet and uniformly charged
thin spherical shell.

Electric potential - potential difference - equipotential
surfaces - electrical potential energy - Dielectrics and
electric polarization - capacitors and capacitance
- combination of capacitors in series and in parallel
- capacitance of a parallel plate capacitor with and
without dielectric medium - energy stored in a capacitor

UNIT 4: CURRENT ELECTRICITY
Electric current - drift velocity - mobility - Ohm's law-V-I
characteristics - electrical energy and power - electrical
resistivity and conductivity - Carbon resistors - series
and parallel combinations of resistors - temperature
dependence - Internal resistance of a cell - potential
difference and emf of a cell - combination of cells in
series and in parallel - Kirchhoff's laws – applications
- Wheatstone bridge - Metre bridge - Potentiometer
- comparison of EMF of two cells - measurement of
internal resistance of a cell.

UNIT 5: MAGNETISM AND MAGNETIC EFFECTS OF
CURRENT
Earth's magnetic field and magneticelements-magnetic
field due to a magnetic dipole - torque on a magnetic
dipole - tangent law, tangent galvanometer deflection
magnetometer - magnetic properties of a material –
dia, para and ferromagnetic materials - applications.
Magnetic effects of electric current – Biot Savart's law
force on a moving charge in an uniform magnetic
field - moving coil galvanometer - conversion of a
galvanometer into voltmeter and ammeter.

UNIT 6: ELECTROMAGNETIC INDUCTION,
ALTERNATING CURRENTS AND ELECTROMAGNETIC
WAVES
Electromagnetic induction - Faraday’s laws,
induced EMF and current - Lenz's Law - Eddy
currents - Self and mutual induction - Alternating
currents, peak and RMS value of alternating
current/voltage - reactance and impedance
- LC oscillations - LCR series circuit - resonance - power
in AC circuits - power factor - wattless current - AC
generator and transformer - Electromagnetic waves –
characteristics - Electromagnetic spectrum .

UNIT 7: OPTICS
Reflection of light - spherical mirrors - mirror formula
- refraction of light -total internal reflection- optical
fibers - refraction at spherical surfaces – lenses - thin
lens formula - lensmaker's formula – magnification
- power of a lens - combination of thin lenses in contact
- refraction of light through a prism - Scattering of
light -Microscopes and astronomical telescopes .

Wave front and Huygen's principle - reflection and
refraction of plane wave at a plane surface- laws of
reflection and refraction using Huygen's principle
- Interference - Young's double slit experiment and
expression for fringe width - diffraction due to a single
slit - width of central maximum – polarization - plane
polarised light - Brewster's law.

UNIT 8: DUAL NATURE OF RADIATION AND MATTER
& ATOMIC PHYSICS
Dual nature of radiation - Photoelectric effect - Hertz
and Lenard's observations - Einstein's photoelectric
equation-particle nature of light. Matter waves-wave
nature of particles - de-Broglie relation - Davission-
Germer experiment - Alpha-particle scattering
experiment - Rutherford's model of atom - Bohr model-
hydrogen spectrum.

UNIT 9: NUCLEAR PHYSICS
Nuclear radius, mass, binding energy, density,
isotopes, mass defect- Bainbridge mass
spectrometer-nuclear forces neutron discovery
– radioactivity-α, β and γ decay-half life - mean
life-artificial radio activity-radio isotopes-radio
carbon dating-radiation hazards. Nuclear fission-
nuclear reactor-nuclear fusion-hydrogen bomb -
cosmic rays-elementary particles.

UNIT 10: ELECTRONIC DEVICES
Semiconductors-doping-types-PN junction diode –
biassing-diode as a Rectifier – Special purpose PN
junction diodes – LED – photodiode - solar cell and
zener diode - characteristics - zener diode as a voltage
regulator- transistors-transistor characteristics –
amplifier – gain-feedback in amplifiers-logic gates-
basic logic gates-NOT, OR, AND, NOR, NAND-universal
gates-De Morgan's theorems.

PART 2 – CHEMISTRY (35 QUESTIONS)
UNIT 1: SOLUTIONS
Types of solutions, expression of concentration of
solutions of solids in liquids, solubility of gases in
liquids, solid solutions, colligative properties - relative
lowering of vapour pressure, Raoult's law, elevation
of boiling point, depression of freezing point, osmotic
pressure, determination of molecular masses using
colligative properties, abnormal molecular mass,
Van't Hoff factor.

UNIT 2: ELECTROCHEMISTRY
Redox reactions, conductance in electrolytic
solutions, specific and molar conductivity, variations
of conductivity with concentration, Kohlrausch's Law,
electrolysis and law of electrolysis (elementary idea),
dry cell-electrolytic cells and Galvanic cells, EMF of a
cell, standard electrode potential, Nernst equation
and its application to chemical cells, Relation between
Gibbs energy change and EMF of a cell, fuel cells,
corrosion.

UNIT 3: CHEMICAL KINETICS
Rate of a reaction (Average and instantaneous),
factors affecting rate of reaction: concentration,
temperature, catalyst; order and molecularity of
a reaction, rate law and specific rate constant,
integrated rate equations and half-life (only for zero
and first order reactions), concept of collision theory
(elementary idea, no mathematical treatment).
Activation energy, Arrhenius equation.

UNIT 4: SURFACE CHEMISTRY
Adsorption - physisorption and chemisorption,
factors affecting adsorption of gases on solids,
catalysis, homogenous and heterogenous activity
and selectivity; enzyme catalysis colloidal state
distinction between true solutions, colloids and
suspension; lyophilic, lyophobic multi-molecular
and macromolecular colloids; properties of colloids;
Tyndall effect, Brownian movement, electrophoresis,
coagulation, emulsion - types of emulsions.

UNIT 5: GENERAL PRINCIPLES AND PROCESSES OF
ISOLATION OF ELEMENTS
Principles and methods of extraction - concentration,
oxidation, reduction - electrolytic method and
refining;

UNIT 6: P-BLOCK ELEMENTS
Group 16 Elements: General introduction, electronic
configuration, oxidation states, occurrence, trends
in physical and chemical properties, dioxygen:
Preparation, Properties and uses, classification of
Oxides, Ozone, Sulphur - allotropic forms; compounds
of Sulphur: Preparation Properties and uses of
Sulphur-dioxide, Sulphuric Acid: industrial process
of manufacture, properties and uses; Oxoacids of
Sulphur (Structures only). Group 17 Elements: General
introduction, electronic configuration, oxidation
states, occurrence, trends in physical and chemical
properties; compounds of halogens, Preparation,
properties and uses of Chlorine and Hydrochloric
acid, interhalogen compounds, Oxoacids of halogens
(structures only). Group 18 Elements: General
introduction, electronic configuration, occurrence,
trends in physical and chemical properties, uses.

UNIT 7: ‘D’ AND ‘F’ BLOCK ELEMENTS
General introduction, electronic configuration,
occurrence and characteristics of transition metals,
general trends in properties of the first row transition
metals - metallic character, ionization enthalpy,
oxidation states, ionic radii, colour, catalytic property,
magnetic properties, interstitial compounds, alloy
formation Lanthanoids - Electronic configuration,
oxidation states, chemical reactivity and lanthanoid contraction and its consequences.

UNIT 8: COORDINATION COMPOUNDS
Coordination compounds - Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding, Werner's theory, VBT, and CFT; structure and stereoisomerism, importance of coordination compounds (in qualitative inclusion, extraction of metals and biological system).

UNIT 9: HALOALKANES AND HALOARENES
Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions, optical rotation. Haloarenes: Nature of C-X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only). Uses and environmental effects of - dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.

UNIT 10: ALCOHOLS, PHENOLS AND ETHERS

UNIT 11: ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

UNIT 12: ORGANIC COMPOUNDS CONTAINING NITROGEN
Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines. Cyanides and Isocyanides Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

UNIT 13: BIOMOLECULES
Carbohydrates - Classification (aldoses and ketoses), monosaccharides (glucose and fructose), D-L configuration oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); Importance of carbohydrates. Proteins - Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes. Vitamins - Classification and functions. Nucleic Acids: DNA and RNA.

UNIT 14: POLYMERS
Copolymerization, some important polymers: natural and synthetic like polythene, nylon polyesters, bakelite, and rubber. Biodegradable and non-biodegradable polymers.

UNIT 15: CHEMISTRY IN EVERYDAY LIFE
Chemicals in medicines - analgesics, tranquilizers antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines. Chemicals in food - preservatives, artificial sweetening agents, elementary idea of antioxidants. Cleansing agents-soaps and detergents, cleansing action

PART 3 – MATHEMATICS (40 QUESTIONS)
UNIT 1: SETS, RELATIONS AND FUNCTIONS
Sets and their representations, union, intersection and complements of sets and their algebraic properties, relations, equivalence relations, mappings, one-one, into and onto mappings, composition of mappings.

UNIT 2: COMPLEX NUMBERS AND QUADRATIC EQUATIONS
Complex numbers in the form a+ib and their representation in a plane. Argand diagram. Algebra of complex numbers, modulus and argument of a complex number, square root of a complex number. Cube roots of unity, triangle inequality. Quadratic equations in real and complex number system and their solutions. Relation between roots and coefficients, nature of roots, formation of quadratic equations with given roots; symmetric functions of roots, equations reducible to quadratic equations.

UNIT 3: MATRICES, DETERMINANTS AND THEIR APPLICATIONS
Determinants and matrices of order two and three, properties of determinants, evaluation of determinants

UNIT 4: COMBINATORICS
Permutations and Combinations: Fundamental principle of counting; permutation as an arrangement and combination as selection, meaning of P(n,r) and C(n,r). Simple applications,

Mathematical Induction and its Applications: Stating and interpreting the principle of mathematical induction. Using it to prove formula and facts.

UNIT 5: ALGEBRA
Binomial theorem and its Applications: Binomial theorem for a positive integral index; general term and middle term; Binomial theorem for any index. Properties of binomial coefficients. Simple applications for approximations.

UNIT 6: DIFFERENTIAL CALCULUS AND ITS APPLICATIONS
Polynomials, rational, trigonometric, logarithmic and exponential functions. Inverse functions. Graphs of simple functions. Limits, continuity, differentiation of the sum, difference, product and quotient of two functions, differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions, derivatives of order up to two. Applications of

Applications of Differential Calculus: Rate of change of quantities, monotonic-increasing and decreasing functions, maxima and minima of functions of one variable, tangents and normals, Rolle's and Lagrange's mean value theorems. Ordinary differential equations, their order and degree. Formation of differential equations. Solution of differential equations by the method of separation of variables. Solution of homogeneous and linear differential equations and those of the type \(\frac{dy}{dx} + p(x)y = q(x) \)

UNIT 7: INTEGRAL CALCULUS AND ITS APPLICATIONS

UNIT 8: ANALYTICAL GEOMETRY
Straight Lines in Two Dimensions: Cartesian system of rectangular co-ordinates in plane, distance formula, area of a triangle, condition for the collinearity of three points and section formula, centroid and incentre of a triangle, locus and its equation, translation of axes, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.

Circles in Two Dimensions: Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle in the parametric form, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to the circle.

Conic Sections in Two Dimensions: Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard form, condition for \(y = mx+c \) to be a tangent and point(s) of tangency.

UNIT 9: VECTOR ALGEBRA
Vectors and scalars, addition of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, scalar and vector triple product. Application of vectors to plane geometry.

UNIT 10: STATISTICS AND PROBABILITY DISTRIBUTION
Measures of Central Tendency and Dispersion: Calculation of mean, median and mode of grouped and ungrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data. Probability: Probability of an event, addition and multiplication theorems of probability and their applications; Conditional probability; Baye's theorem, probability theorems of probability and their applications.

UNIT 11: TRIGONOMETRY
Trigonometry ratios, compound angles, trigonometrical equations, solution of triangles, Trigonometrically identities and equations-Inverse trigonometric functions and their properties.
Properties of triangles, including, incentre, circumcentre and orthocenter, solution of triangles.

PART 4: BIOLOGY (40 QUESTIONS)

UNIT 1: DIVERSITY IN LIVING WORLD
Biodiversity, Importance of classifications, Taxonomy & Systematics, Concept of species and taxonomical hierarchy, Binomial nomenclature, Tools for study of Taxonomy.

Five kingdom classification: Monera, Protista and Fungi into major groups; Lichens; Viruses and Viroids. Salient features of them.

Classification of plants into major groups: - Algae, Bryophytes, Pteridophytes, Gymnosperm and Angiosperm - salient and distinguishing features. Angiosperms - classification up to class, characteristic features and examples.

Classification of animals: non chordate up to phyla level and chordate up to class's level - salient and distinguishing features.

UNIT 2: STRUCTURAL ORGANIZATION IN ANIMALS AND PLANTS

Plant tissues: Morphology and modifications, Tissues, Anatomy and functions of different parts of flowering plants: Root, stem, leaf, inflorescence, flower, fruit and seed.

Animal tissues: Morphology, anatomy and functions of different systems (digestive, circulatory, Respiratory, nervous and reproductive) of an insect (cockroach)

UNIT 3: CELL STRUCTURE AND FUNCTION

Chemical constituents of living cells: Biomolecules – structure and function of proteins including Enzymes- types, properties, enzyme action, carbohydrates, lipid and nucleic acids.

Cell division: Cell cycle, mitosis, meiosis and their significance.

UNIT 4: PLANT PHYSIOLOGY

Transport in plants: Movement of water, gases and nutrients, Cell to cell transport – Diffusion, active transport; Plant – water relations- Imbibition, water potential, osmosis, plasmolysis; Long distance transport of water – Absorption, apoplast, symplast, transpiration pull, root pressure and guttation; Transpiration– Opening and closing of stomata; Uptake and translocation of mineral nutrients– Transport of food, phloem transport.

Mineral nutrition: Essential minerals, macro and micronutrients and their role, Deficiency symptoms, Mineral toxicity, Elementary idea of Hydroponics, Nitrogen metabolism

Photosynthesis: Significance - site of photosynthesis - Photochemical and biosynthetic phases of photosynthesis, Cyclic and non cyclic photophosphorylation; Chemiosmotic hypothesis; Photorespiration; C3 and C4 pathways; Factors affecting photosynthesis.

Respiration: Cellular respiration - glycolysis, fermentation (anaerobic), Kreb's cycle and electron transport system (aerobic); Energy relations – Number of ATP molecules generated; Amphibolic pathways; Respiratory quotient.

Plant growth and development: Seed germination, Phases of plant growth and plant growth rate, Conditions of growth, Differentiation, dedifferentiation and redifferentiation, Sequence of developmental process in a plant cell, Growth regulators: auxin, gibberellin, cytokinin, ethylene, ABA. Seed dormancy, Photoperiodism, Vernalisation.

UNIT 5: HUMAN PHYSIOLOGY

Digestion and absorption: Alimentary canal and digestive glands, Role of digestive enzymes and gastrointestinal hormones, Peristalsis, digestion, absorption and assimilation of proteins, carbohydrates and fats, Calorific value of proteins, carbohydrates and fats, Egestion; Nutritional and digestive disorders– PEM, indigestion, constipation, vomiting, jaundice, diarrhea.

Breathing and Respiration: Respiratory organs in animals, Respiratory system in humans, Mechanism of breathing and its regulation in humans- Exchange of gases, transport of gases and regulation of respiration, Respiratory volumes, Disorders related to respiration-Asthma, Emphysema, Occupational respiratory disorders.

Body fluids and circulation: Composition of blood, blood groups, coagulation of blood, Composition of lymph and its function, Human circulatory system – Structure of human heart and blood vessels, Cardiac cycle, cardiac output, ECG, Double circulation, Regulation of cardiac activity, Disorders of circulatory
- Hypertension, Coronary artery disease, Angina pectoris, Heart failure.

Excretory products and their elimination: Modes of excretion – Ammonotelism, ureotelism, uricotelism, Human excretory system–structure and fuction, Urine formation, Osmoregulation, Regulation of kidney function– Renin - angiotensin, Atrial Natriuretic Factor, ADH and Diabetes insipidus, Role of other organs in excretion, Disorders - Uraemia, Renal failure, Renal calculi, Nephritis, Dialysis and artificial kidney.

Locomotion and Movement: Types of movement – ciliary, flagellar, muscular, skeletal muscle – contractile proteins and muscle contraction, Skeletal system and its functions, Joints, Disorders of muscular and skeletal system - Myasthenia gravis, Tetany, Muscular dystrophy, Arthritis, Osteoporosis, Gout.

Neural control and coordination: Neuron and nerves, Nervous system in humans– central nervous system, peripheral nervous system and visceral nervous system, Generation and conduction of nerve impulse, Reflex action, Sensory perception, Sense organs, Elementary structure and function of eye and ear.

Chemical coordination and regulation: Endocrine glands and hormones, Human endocrine system - Hypothalamus, Pituitary, Pineal, Thyroid, Parathyroid, Adrenal, Pancreas, Gonads. Mechanism of hormone action, Role of hormones as messengers and regulators, Hypo-and hyperactivity and related disorders: Common disorders e.g. Dwarfism, Acromegaly, Cretinism, goiter, exophthalmic goiter, diabetes, Addison's disease.

UNIT 6: REPRODUCTION

Reproduction in Organisms: Reproduction, a characteristic feature of all organisms for continuation of species, modes of reproduction - asexual and sexual reproduction, asexual reproduction - binary fission, sporulation, budding, gemmule formation, fragmentation, vegetative propagation in plants.

Sexual Reproduction in Flowering Plants: Flower structure, development of male and female gametophytes, pollination - types, agencies and examples, out breeding devices, pollen-pistil interaction, double fertilization, post fertilization events - development of endosperm and embryo, development of seed and formation of fruit, special modes apomixis, parthenocarpy, polyembryony, Significance of seed dispersal and fruit formation.

Human Reproduction: Male and female reproductive systems, microscopic anatomy of testis and ovary, gametogenesis - spermatogenesis and oogenesis, menstrual cycle, fertilization, embryo development up to blastocyst formation, implantation, pregnancy and placenta formation, parturition, lactation.

Reproductive Health: Need for reproductive health and prevention of Sexually Transmitted Diseases (STDs), birth control - need and methods, contraception and medical termination of pregnancy (MTP), amniocentesis, infertility and assisted reproductive technologies - IVF, ZIFT, GIFT.

UNIT 7: GENETICS AND EVOLUTION

Principles of Inheritance and Variation: Heredity and variation, Mendelian inheritance, deviations from Mendelism – incomplete dominance, co - dominance, multiple alleles and inheritance of blood groups, pleiotropy, polygenic inheritance, chromosome theory of inheritance, chromosomes and genes, Sex determination in humans, birds and honey bee, linkage and crossing over, sex linked inheritance - haemophilia, colour blindness, Mendelian disorders in humans – thalassemia, chromosomal disorders in humans, Down's syndrome, Turner's and Klinefelter's syndromes.

Molecular Basis of Inheritance: DNA as genetic material, Structure of DNA and RNA, DNA packaging and replication, Central dogma, transcription, genetic code, translation, gene expression and regulation - lac operon, genome and human and rice genome projects, DNA fingerprinting.

Evolution: Origin of life, biological evolution and evidences for biological evolution (paleontology, comparative anatomy, embryology and molecular evidences), Darwin's contribution, modern synthetic theory of evolution, mechanism of evolution - variation (mutation and recombination) and natural selection with examples, types of natural selection; Gene flow and genetic drift; Hardy - Weinberg's principle; adaptive radiation; human evolution.

UNIT 8: BIOLOGY AND HUMAN WELFARE

Human Health and Diseases: Pathogens, parasites causing human diseases (malaria, dengue, chickengunia, filariasis, ascariasis, typhoid, pneumonia, common cold, amoebiasis, ring worm) and their control, Basic concepts of immunology – vaccines, cancer, HIV and AIDS, Adolescence - drug and alcohol abuse.

Strategies for Enhancement in Food Production: Improvement in food production, Plant breeding, tissue culture, single cell protein, Biofortification, Api culture and Animal husbandry.

Microbes in Human Welfare: In household food processing, industrial production, sewage treatment,
energy generation and microbes as bio-control agents and bio-fertilizers. Antibiotics - production and judicious use.

UNIT 9: BIOTECHNOLOGY AND ITS APPLICATIONS
Biotechnology: Principles and processes: Genetic Engineering (Recombinant DNA Technology).
Biotechnology and its Application: Application of biotechnology in health and agriculture: Human insulin and vaccine production, stem cell technology, gene therapy, genetically modified organisms - Bt crops; transgenic animals, biosafety issues, bio piracy and patents.

UNIT 10: ECOLOGY AND ENVIRONMENT
Organisms and Populations: Organisms and environment: Habitat and niche, population and ecological adaptations, population interactions - mutualism, competition, predation, parasitism, population attributes - growth, birth rate and death rate, age distribution.
Ecosystem: Patterns, components, productivity and decomposition, energy flow, pyramids of number, biomass, energy, nutrient cycles (carbon and phosphorous), ecological succession, ecological services - carbon fixation, pollination, seed dispersal, oxygen release.
Biodiversity and its Conservation: Biodiversity - Concept, patterns, importance, loss of biodiversity, biodiversity conservation, hotspots, endangered organisms, extinction, Red Data Book, biosphere reserves, national parks, sanctuaries and Ramsar sites.
Environmental Issues: Air pollution and its control, water pollution and its control, agrochemicals and their effects, solid waste management, radioactive waste management, greenhouse effect and climate change impact and mitigation, ozone layer depletion, deforestation, any one case study as success story addressing environmental issue(s).

PART 5 – ENGLISH (5 QUESTIONS)
This part contains reading Comprehension questions. Short passages, lines from poems or dialogues will be given as comprehension passage with a set of 5 questions. Each question will have four options to pick the correct one.

PART 6 – APTITUDE (10 QUESTIONS)
1. NUMBER SYSTEM
Properties of numbers, Divisibility rules, Unit digit, Euclid's algorithm, LCM and GCD
2. STATISTICS
Arithmetic mean, weighted mean, Geometric mean
3. PERCENTAGE
Percentage change-increase or decrease
4. PROFIT AND LOSS
Computing percentage of profit or loss and profit/loss value
5. QUADRATIC EQUATION
Nature of roots, Relationship between roots and coefficients, Solutions of quadratic equations
6. GEOMETRY
Similar triangles, Lines and angles, Circles and Quadrilaterals
7. ARRANGEMENT
Ordering, Grading and Ranking, coding and decoding
8. DIRECTION SENSE TEST
Inding direction, distance or both
9. LINEAR EQUATION
Solving simultaneous equations, Test of consistency, problems on ages
10. TRIGONOMETRY
Values of trigonometric ratios, Identities, Heights and distances
PART I - PHYSICS

1. One watt hour contains how many Joules?
 a) 3.6×10^8 b) 3.6×10^2 c) 3.6×10^3 d) 1×10^3

2. The dimension of kinetic energy is same as that of ______
 a) Force b) Pressure c) Work d) Momentum

3. A food packet is dropped from a helicopter rising upwards at a constant speed of 2m/s.
 How far below the helicopter the packet will be after 2 seconds? Take $g = 10\text{m/s}^2$
 a) 16m b) 20m c) 24m d) 40m

4. The range of projectile when launched at an angle of 15° with the horizontal is 1.5km. What is the range of the projectile when launched at an angle of 45° to the horizontal?
 a) 1.5 km b) 3.0 km c) 6.0km d) 0.75km

5. An unpolarized beam of intensity $2a^2$ passes through a Polaroid.
 The intensity of emergent plane polarized light is ______
 a) $a^2/2$ b) $4a^2$ c) $2a^2$ d) a^2

PART II - CHEMISTRY

1. The elevation in the boiling point of a liquid is
 a) dependent of both the nature and molality of the solute
 b) independent of both the nature and molality of the solute
 c) dependent of the nature of the solute and independent of molality of the solute
 d) independent of the nature of the solute and dependent of molality of the solute

2. What is the term for the electrode where reduction reaction occurs?
 a) anode b) cathode c) oxidizing agent d) reducing agent

3. In an electrochemical cell, electrons travel in which direction?
 a) From the anode to the cathode through the external circuit
 b) From the anode to the cathode through the porous cup
 c) From the cathode to the anode through the external circuit
 d) From the cathode to the anode through the porous cup

4. The compound CH$_3$-CH$_2$-NH-CH$_3$ is an example of a
 a) Primary amine b) Secondary amine c) Tertiary amine d) Primary amide

5. The diazonium salts have which of the general formula?
 a) RN$_2^+$.X$^-$ b) RN$_2^+$.X$_2$ c) RN$^+$.X$^-$. d) RN$^+$.X$^-$

PART III - MATHEMATICS

1. Let $X = \{a, a^2, \ldots, a^6\}$ and $Y = \{b_1, b_2, b_3\}$. The number of functions f from X to Y such that it is onto and there are exactly three elements x in X such that $f(x) = b_1$ is
 a) 75 b) 90 c) 100 d) 120

2. If the graph of $y = f(x)$ is symmetrical about lines $x = 1$ and $x = 2$, then which of the following is true?
 a) $f(x + 1) = f(x)$ b) $f(x + 3) = f(x)$ c) $f(x + 2) = f(x)$ d) $f(x + 4) = f(x)$

3. For all complex numbers z of the form $z = 1 + 2i\alpha$ where $\alpha \in \mathbb{R}$, if $z^2 = x + iy$, then
 a) $y^2=4x+2=0$ b) $y^2+2x-4=0$ c) $y^2+4x-4=0$ d) $y^2+6x-4=0$

4. If $|z-4+3i| + |z+11-5i|=17$, the locus of the point ‘z’ on the Argand plane is
 a) an ellipse with foci 4-3i,5i-11 b) a line
 c) a segment of the line through 4-3i and 5i-11 d) a line, except for a segment of the line

5. Let $f(x+2)=x^3+2x^2-3x+1$. then, $f'(3)$ equals
 a) 5 b) 4 c) -6 d) 2
1. Which plant hormone is basic in nature?
 a) Auxin b) Gibberellins c) Cytokinin d) Abscisic acid

2. Delay of senescence or Richmond Lang effect is a physiological effect of
 a) IAA b) CK c) GA d) C₂H₄

3. Shelf life of vegetables and cut flowers can be increased by commercial application of
 a) Cytokinin b) AMO1618 c) Cyclocel d) Phosphon-D

4. In maize, hybrid vigour is exploited by
 a) inducing mutations c) crossing of two inbred parental lines
 b) bombarding the protoplast with DNA d) harvesting seeds from the most productive plants

5. 90% of blood from auricles enter into ventricles during
 a) Auricular Systole
 c) Ventricular Systole
 b) Auricular Diastole
 d) Ventricular Diastole

1. “Your parents were not anxious enough to have you learn. They preferred to put you to work on a farm or at the mills, so as to have a little more money. And I? I've been to blame also. Have I not often sent you to water my flowers instead of learning your lessons?” (This passage best expresses the writer's:)
 a) feeling of anger b) sense of guilt c) state of confusion d) feeling of fright

2. MR LAMB: I should say....to look at it.... I should say, you got burned in a fire.
 DERRY: Not in a fire. I got acid all down that side of my face and it burned it all away. It ate my face up. It ate me up. And now it's like this and it won't ever be any different.
 (Derry's statement portrays a feeling of:)
 a) Exhaustion and helplessness b) Anger and revenge c) Self-pity and acceptance d) Rejection and regret

3. “You must have patience, my little girl,” said the father. (The indirect speech of this sentence is:)
 a) The father advised his daughter that she should have patience
 b) The father told his daughter that she must have patience
 c) The father ordered his daughter to have patience
 d) The father says that she should have patience

4. “Besides, the whole school seemed so strange and solemn. But the thing that surprised me most was to see, on the back benches that were always empty, the village people sitting quietly like ourselves.”
 (The underlined word means:)
 a) By the side of b) In addition to that c) On account of that d) In spite of that

5. “It seemed a long way down. Those nine feet were more like ninety, and before I touched bottom my lungs were ready to burst. But when my feet hit bottom I summoned all my strength and made what I thought was a great spring upwards.” (The passage above describes the author's experiment with:)
 a) Flying b) Skating c) Swimming d) Sailing

1. The number M39048458N is divisible by 11 and 8, where M, N are single digit numbers.
 Then what is the value of M, N?
 a) 7, 8 b) 8, 6 c) 6, 4 d) 5, 4

2. What is the average of first 18 multiples of 6?
 a) 18 b) 6 c) 72 d) 57

3. If the radius of a sphere is doubled, what is the percentage change in its volume?
 a) 800% increase b) 800% decrease c) 700% increase d) No change

4. The cost price of a pen is Rs.200 and its selling price is Rs.250. Find its profit %.
 a) 20 b) 25 c) 50 d) 100

5. If a and b are the roots of the quadratic equation x²-2x+7=0, what will be the value of a²+b²?
 a) 20 b) 25 c) 50 d) 100